Mass preserving discontinuous Galerkin methods for Schrödinger equations
نویسندگان
چکیده
Article history: Received 19 January 2014 Received in revised form 13 October 2014 Accepted 12 November 2014 Available online 18 November 2014
منابع مشابه
Local discontinuous Galerkin methods for nonlinear Schrödinger equations
In this paper we develop a local discontinuous Galerkin method to solve the generalized nonlinear Schrödinger equation and the coupled nonlinear Schrödinger equation. L stability of the schemes are obtained for both of these nonlinear equations. Numerical examples are shown to demonstrate the accuracy and capability of these methods. 2004 Elsevier Inc. All rights reserved. MSC: 65M60; 35Q55
متن کاملEnergy preserving model order reduction of the nonlinear Schrödinger equation
An energy preserving reduced order model is developed for the nonlinear Schrödinger equation (NLSE). The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. Preservation of the semi-discrete energy...
متن کاملConservative Local Discontinuous Galerkin Methods for Time Dependent Schrödinger Equation
This paper presents a high order local discontinuous Galerkin time-domain method for solving time dependent Schrödinger equations. After rewriting the Schrödinger equation in terms of a first order system of equations, a numerical flux is constructed to preserve the conservative property for the density of the particle described. Numerical results for a model square potential scattering problem...
متن کاملPositivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations
Shallow water equations with a non-flat bottom topography have been widely used to model flows in rivers and coastal areas. An important difficulty arising in these simulations is the appearance of dry areas, as standard numerical methods may fail in the presence of these areas. These equations also have steady state solutions in which the flux gradients are nonzero but exactly balanced by the ...
متن کاملLocal discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrödinger type equations
Fractional partial differential equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we propose a local discontinuous Galerkin (LDG) method for the distributedorder time and Riesz space fractional convection-diffusion and Schrödinger type equations. We prove stability and optimal order of convergence O(h + (∆t) θ 2 + θ) for the distr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 282 شماره
صفحات -
تاریخ انتشار 2015